
Malaysian Journal of Mathematical Sciences 5(1): 27- 44 (2011) 

 

Analyzing Data with Missing Continuous Covariates 

by Multiple Imputation Using Proper Imputation 

 

M. Ganjali and H. Zahed 

Department of Statistics,  

Shahid Beheshti University,  

Evin, Tehran, Iran. 

E-mail: m-ganjali@sbu.ac.ir 

 

 

ABSTRACT 

Missing covariate data occur inevitably in various scientific researches. The response 
variable of interest in these studies may be continuous or categorical and the 
covariates may have a continuous or discrete nature. Multiple Imputation (MI) 
procedures may be used to properly or improperly impute the missing data several 
times and to find parameter estimates by combining the pseudo-complete-case 
analyses of the imputed data-sets. Although many efforts in the literature have been 

placed on analyzing continuous response data with missing covariates using MI, 
models for ordinal response data with missing covariates have received less attention. 
In this paper four different models for imputation of a missing continuous covariate, of 
which three are proper and one improper, are compared in models for ordinal 
responses. All models can be easily implemented in existing software. Data from a 
Steatosis study is used to illustrate the use of these models. The importance of using a 
fuller model for imputation compared to that of the analysis model is finally 
underlined. 

 
Keywords: Missing Data, Categorical Response Data, Generalized Linear Models 
(GLMs), Multiple Imputation, Predictive Distribution, Proper Imputation. 

 

 

INTRODUCTION 

Incomplete data, in which parts of the information relating to 

some subjects are not available, is a common problem in both 

experimental and observational studies. Standard statistical modeling 

methods require a complete dataset in which all responses (yi’s) and 

covariates  (xi’s) have been fully recorded. When parts of the data are not 

available, a typical method usually referred to as "Complete-Case 

analysis" (CC), is to disregard all cases with missing values and estimate 

model parameters using the remaining complete dataset. Though simple, 

this could result in serious bias and inefficiency (Little and Rubin 

(2002)). Hence much effort in the past has been put into methods 
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concerning data-analysis and statistical modeling in the presence of 

missing data. Little and Rubin (2002) and Schafer (1997) give thorough 

reviews of available methods in the literature for handling missing data. 

Most of these methods concern themselves primarily with incomplete 

data on behalf of the response variable. Little and Schluchter (1985) 

and Little (1992) discuss missing covariates in models for normal data. 

Ibrahim (1990) and Horton and Laird (1998) focus on missing 

categorical covariates in Generalized Linear models (GLMs); and Ibrahim 

et al. (1999) extend this approach to the case of missing continuous 

covariates. In a review article, Ibrahim et al. (2005) cover the literature 

for missing covariates in GLMs. For a thorough review of Generalized 

Linear Models the reader can see McCullagh and Nelder (1989). 

Fahrmeir and Tutz (1994) and Agresti (2002) pay special attention to 

the modeling of categorical (nominal and ordinal) responses. 

 

However, models for ordinal data with missing covariate have 

received less attention. A variety of ordinal regression models can be used 

to model ordinal data (Snell (1964); Agresti (2002); McCullagh (1980)) 

when there is no missing covariate. These include cumulative models 

(with logit, probit or complementary log-log link functions) and 

sequential models (Fahrmeir and Tutz (1994); Berridge (1995); Berridge 

and Dos Santos (1996); Tutz (2005)) for which different link functions 

can be used. In this paper we shall use the logit link since it is the 

canonical link (Nelder and Wedderburn (1972)) and leads to a 

likelihood that is simpler to optimize compared to the likelihood derived 

using the other links. This paper will concern itself with modeling ordinal 

data when the information on behalf of some continuous covariate is 

partly not available due to missingness. 

 

 

MODELS AND CONCEPTS 

In this section some primary concepts regarding GLMs and 

the modeling of ordinal data are presented. Also issues concerning 
incomplete datasets and approaches to the analysis of such data are 

briefly reviewed. For more detailed discussions the reader can refer to the 

mentioned references. 
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GLMs and Modeling Categorical Responses 

A Generalized Linear Model, as a generalization of the familiar linear 

model, is characterized by: 

 

( ) ( );
i i i

y x hµ ′= Ε =
i

z β  

 

in which h  is a known one-to-one link function, ββββ  is a vector of 

parameters and 
i

z ,  a function of 
i

x , is referred to as the design 

vector. The model errors here do not necessarily follow the Normal 

distribution, but rather a distribution from the simple exponential family 

with the general form: 

 

( )
( )

( ); , exp , ;
i i i

i i i

y b
f y c y

θ θ
θ φ φ

φ

 − 
= + 

 
 

 

where 
i

θ  is the natural parameter (possibly a vector), φ  is an 

additional dispersion parameter and  b  and c  are known functions 

relating to the specific distribution in the family (Normal, Poisson, 

Gamma, etc.). 

 

Estimation of model parameters ββββ  and possibly φ  are carried out by 

maximizing the model likelihood using iterative methods such as 

Newton-Raphson. Different choices of the link function h and error 

distributions result in different models. If the errors follow a Poisson 

distribution and ( ) ( )1
log ,hη µ µ−

= =  the resulting model is a log-

linear model suitable for  count data.  For binary data a choice of  

( )( )log 1 ,η π π= −  where ( )1
i i

P y xπ = =  prompts the familiar logistic 

regression model. For normal data one may use the identity function as 

a link. 

 

For nominal responses however, the same idea is extended to form a 

multivariate version of a GLM. If 
i

y  is a nominal variable with 

J categories, 
i

y  can be assumed to follow a Multinomial distribution: 

 

( )1 2, , ,...,
i i i i iJ

y Multinomial n p p p∼ .  
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Now each category when compared to another can resemble a similarity 
to the case of binary responses. With the last category treated as 

reference, for each category j  we can write: 

 

log 1,..., 1;
ij

j

iJ

p
j J

p
′= = −
i

z ββββ  

 
which is sometimes referred to as a base-line category logit model. 

 

Finally for ordinal responses with J  ordered categories, the same idea 

leads to a cumulative logit model with the general form: 

 

( )
( )

log ;
i i

r

i i

P y r x

P y r x
θ

 ≤
′= + 

 > 
i

z β                                (1) 

 

where 1,..., 1r J= − and '
r

sθ  are the so-called threshold parameters, cor-

responding to each level of the ordinal variable. The cumulative logit 

model can be better interpreted using the idea of a latent variable. In this 

approach, the ordinal variable y  is thought of as an observable version of 

the continuous, yet unobservable variable y
∗
, which is in turn related to 

the design vector z  in a linear fashion: 

 

i
y ε∗ ′= − +

i
z β  

 

Here, '
r

sθ are thought of as cut points or thresholds which define the 

relationship between y  and y
∗
: 

 

1 , 1, 2,..., .
i r i r

y r y r Jθ θ∗

−= ⇔ < < =  

 

These thresholds are additional parameters themselves, which will need to be 
estimated. Although usually they are not of interest and only used to 

compute response probabilities, they can be interpreted as partition-specific 

intercepts (cut-points) indicating the logarithms of odds of selecting lower, 
rather than higher, categories when all explanatory variables are set to zero. 

It can be easily seen that y is related to the linear predictor ′z β  in the form:  

( ) ( ) ,
i r

P y r F θ ′≤ = +
i i

z z β  
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where F is the distribution function of the random variable ε . When a 

logistic distribution is assumed for F , (1) is simply obtained. 

 

Patterns and Mechanisms of Missing Data 

A distinction is usually made between the placement of unavailable 

(missing) items in the dataset, i.e. missing-data pattern, and the mechanism 

leading to this unavailability, referring to the relationship between 

missingness and the values of variables. Let { }ijR r= be an indicator matrix 

denoting whether the item in the i ’th row and  j ’th column of the dataset 

{ }ijY Y= is observed. The missing-data pattern is said to be monotone if 

it can be arranged in such a way that if 0
ij

r =  then 0
ik

r =  for all 

k j> .  This means that if there is some order on the variables (e.g. 

longitudinal response data) and the j -th response is missing, all 

responses after the j -th response are also missing. If not, the pattern is 

said to be general or intermittent i.e. the individual with some missing 

values may be returned to the study after a period of time. The Y here 
represents the whole data matrix including the covariates. 

 

Using the terminology of Little and Rubin (2002) and Diggle and Kenward 

(1994), the missing-data mechanism is said to be Missing Completely at 

Random (MCAR) if: 

 

( ) ( ), , ;f R Y f R Y= ∀φ φ φφ φ φφ φ φφ φ φ  

 

that is missingness does not depend on any variable in the data-set. Here φφφφ  

is a vector of parameters. 

 

If ( ), ,
obs mis

Y Y Y=  where 
obs

Y is the observed part of Y and 
mis

Y is the missing 

part, the missing-data mechanism is said to be Missing at Random (MAR) if: 
 

( ) ( ), , , ;
obs mis

f R Y f R Y Y= ∀φ φ φφ φ φφ φ φφ φ φ  

 

which means that missingness only depends on the observed values of the 

dataset and not on the missing ones. 
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MCAR and MAR mechanisms are usually referred to as ignorable. In 
contrast to these ignorable mechanisms (so called because in fully parametric 

analysis, based on likelihood function the model for the missing data 

mechanism may be ignored with the assumption that parameters associated 
with missing mechanism and the responses of interest are disjoint), if the 

distribution of  R  also depends on the missing values 
mis

Y , the mechanism is 

said to be Not Missing at Random (NMAR). In this paper we shall assume 
that missing covariate data are MAR and so missing mechanism can be 

ignored. 

 

Approaches to the Analysis of Incomplete Data 

Four general approaches in handling missing data can be distinguished: 

 

1. Complete-Case Analysis is the simplest method for the analysis of 
incomplete data which involves the analysis of the set of observation 

with no missing values. Although quite simple and tractable, this ap-

proach is only advised when the missing-data mechanism is known 
to be MCAR and the rate of missingness is fairly low. 

 

2. Weighting Procedures which are similar to randomization inferences 

in sample survey data where the complete cases are re-weighted to 
adjust for non-response (Robins et al. (1995)). In these methods a 

model for the probability of missingness is fitted, and the inverse of 

these probabilities are used as weights for the complete cases. 
 

3. Likelihood Based Approaches involve method where one needs to 

model the distribution of the missing covariates (vide Lipsitz and 

Ibrahim, (1996)) and to include it in the model likelihood.   Monte-
Carlo and iterative methods are then used to make inferences 

about the model using the obtained likelihood. 

 
4. Imputation Based Methods where missing values are "filled-in" once 

or several times (resulting in Single Imputation and Multiple 

Imputation) using a specific method such as mean imputation, 
hot-deck imputation, regression imputation, etc. and the resulting 

imputed dataset is treated as a complete dataset in which standard 

statistical methods are applicable. 
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Issues concerning incomplete datasets and general approaches to modeling 

data in the presence of missingness are given a standard review in Little 

and Rubin (2002). Schafer and Graham (2002) also provide a concise and 

explicit introduction to the subject. 

 

 

MULTIPLE IMPUTATION 

Single Imputation, though practically convenient, treats the 
resulting dataset as if complete, failing to take into account the 

uncertainty regarding the imputed values. This usually results in biased 

estimates of population quantities. Thus Rubin (1978) proposed Multiple 

Imputation (MI), in which the advantages of imputation are retained 
whilst the drawbacks are also addressed. 

 

MI consists of three successive steps: 
 

1.  Imputing each missing value M times to obtain M pseudo-

complete datasets, 

 
2. Analyzing each data-set using standard statistical methods for 

the estimation of a desired population quantity Q , and obtaining 

1
ˆ ˆ,...,

M
Q Q  with respective variances 1

ˆ ˆ,..., ,
M

V V  

 
3. Combining the results using Rubin's rules: 

 

1

1ˆ ˆ

1 ˆ1

M

m

m

Q Q
M

V V B
M

=

=

 
= + + 

 

∑

 

in which 
1

1 ˆM

mm
V V

M =
= ∑  is the average within imputation variance 

and ( )1

1 ˆ ˆˆ
1

M

mm
B Q Q

M =
= −

−
∑  is the between imputation variability. 
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 The important part of MI is the process by which the M imputations 
are generated. When the missingness has occurred in one or more of the 

covariates ( )'x s , the general idea is to make draws from ( ), ;
mis obs

P x y x γ  in 

which 
mis

x indicates the missing part of x  and 
obs

x  the observed part. If the 

missing data mechanism is assumed to be MAR, in order to generate 

, ,
mis i

x the imputation distribution: 

 

( ) ( ) ( ), , , ,, ; ; ;mis i i obs i i i mis i obs iP x y x P y x P x xγ β α∝          (2) 

 

may be used. Here i  indicates the i ’th subject in the study and  ( ),γ α β= . 

The first term on the right hand side of (2) indicates the analysis model (the 

original model of interest), relating the response variable y to the covariates. 

If y  has an ordinal nature this model will have the form of a cumulative 

logit model. The β  is a vector of parameters for this model which needs to 

be estimated. The second term represents the distribution of the missing 

covariate(s) with nuisance parameters α . According to the nature of the 

missing covariate(s) this term could take different forms. In this paper we 

will be concerning ourselves with continuous missing covariates which we 

will assume to follow a Normal distribution.  For continuous ,mis i
x we have: 

 

( )
( ) ( )

( ) ( )
, ,

, ,

,

; ;
, ;

; ;

i i mis i obs i

mis i i obs i

j j mis obs j mis

P y x P x x
P x y x

P y x P x x dx

β α
γ

β α
=

∫
 

 

 Rubin (1987) distinguishes proper from improper imputation and 
suggests a Bayesian approach to the process. In improper imputation some 

estimate γɶ  is substituted for γ  and draws are subsequently made from the 

imputation distribution. He shows that this approach doesn't in general provide 
valid inferences and so calls it "improper". In "proper" imputation however, a 

prior distribution is first chosen for  γ  and then draws are made from the joint 

posterior distribution of ( ), ,
mis obs

x x yγ  using MCMC methods. In other words, 

in order to fill-in the missing values, draws can be made from the posterior 

predictive distribution, via the Gibbs Sampler (Ibrahim et al. (2005)): 
 

( ) ( ) ( ), , , ,, , , , ,mis i i obs i mis i i obs i obsP x y x P x y x y x d dγ π α β α β∝ ∫∫           (3) 
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In the Equation (3), ( ), ,
obs

y xπ α β is the joint posterior distribution for 

( ),α β based on the observed data. 

 

 The imputation distribution could very well differ from the analysis 

model. When the imputation model uses more information compared to the 
analysis model, the analysis tends to be more efficient than expected and the 

confidence intervals would for example have greater than nominal convergence 

rates. Rubin (1996) calls this "super efficiency". For a more detailed discussion 
see Rubin and Schenker (1986), Fay (1992, 1996) and Little and Rubin (2002).  

 

The posterior distribution of model parameters γ under the MAR 

assumption, can be written as 

 

( ) ( ) ( ) ( ), , , ,
obs obs obs

P y x R P y x c f y xγ γ π γ γ= = × × , 

 

in which ( )π γ  is the prior distribution of parameters, f is the density of 

the observed data, c  is a constant and similar to before, 
obs

x  represents the 

observed part of the covariates.  Now by simple probability theory, we have 
 

( ) ( )

( ) ( )

, , ,

, , , .

obs mis obs mis

obs mis mis obs mis

P y x P x y x dx

P y x x P x y x dx

γ γ

γ

=

=

∫

∫
             (4) 

 

 The equation (4) suggests that we can first generate 
mis

x  from the 

posterior distribution ( ),
mis obs

P x y x  and then use the values to generate γ  

from ( ), , .
obs mis

P y x xγ  

 

 What proper MI does is that it consistently estimates from Equation 
(4) by averaging over the missing values 

 

( ) ( )( )
1

1
, , , ,

D
d

obs obs mis

d

P y x P y x x
D

γ γ
=

≈ ∑  

 

where 
( )d

mis
x ’s are draws from the posterior predictive distribution 

( ), .
mis obs

P x y x  
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Other distribution properties, like expectations and variances can 

in turn be estimated in a similar fashion for vector of parameter γ  and 

sufficiently large positive integer D  as follows 

 

( ) ( )( )
1

1
, , , ,

D
d

obs mis mis

d

y x P y x x d
D

γ γ γ γ γ
=

Ε ≈ =∑∫  

 

( ) ( )
2

1 1

1 1
ˆ, ,

1

D D

obs d

d d

Var y x V V B
D D

γ γ γ
= =

≈ + − = +
−

∑ ∑  

 

in which ( ) ( )1
ˆ ˆ, , , ; , ,

D D d

d d obs mis d obs misd
D y x x V Var y x xγ γ γ γ γ

=
= = Ε =∑ the 

posterior variance from the d ’th imputed data-set, 
1

D

dd
V V D

=
=∑  and 

( ) ( )
1

ˆ 1 .
D

dd
B Dγ γ

=
= − −∑   

 

 

APPLICATION: STEATOSIS STUDY 

In this section first a dataset with ordinal responses is introduced and 

then missingness is generated using MAR mechanism, on a continuous 
covariate. Four approaches to MI for this data are then discussed and 

implemented. 

 

The Data 

Steatosis is the infiltration of liver cells with fat, usually associated with 

disturbance of the metabolism. It is measured by means of sonography and 

on an ordinal scale with three levels: 
 

1. The individual has no sign of Steatosis (None), 

 
2. The individual has signs of mild Steatosis (Mild), 

 

3. The individual has signs of severe Steatosis (Severe). 
 

The data used here is recorded at Taleghani hospital, Tehran, and from 60 

diabetic patients as part of an observational study on Steatosis and 

overweight. Explanatory variables (covariates) used in the model include: 
age, sex, duration (indicating the duration in years that the individual has 

been diabetic), blood pressure (in mmHG) and Body Mass Index (BMI, 
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calculated by dividing an individual’s weight in kilograms by his/her height 

in meters squared). 
 
TABLE 1:   Sample mean and standard error of continuous variables in the study 
 
 

Variable Mean SE 

Age ( )1
z  60.317 9.177 

Duration ( )2
z  9.717 5.969 

Blood Preasure ( )3
Z  136.800 23.585 

BMI ( )x  28.044 3.923 

 

 
TABLE 2: An overview of discrete variables in the study 

 

Variable Levels Frequency Percentage 

Steatosis ( )y  None 12 20% 

 Mild 18 30% 

 Severe 30 50% 

Sex ( )4
z  Female 24 40% 

 Male 36 60% 

 

 

Tables 1 and  2 show an overview of the dataset. Results of  Table 1 shows 
that in average sample includes old people with high BMI and blood 

pressure. Table 2 shows that half of the people in the sample have severe 

Steatosis. 

 
In order to examine the performance of different MI procedures, the fol-

lowing missing-data mechanism is implemented on the continuous 

covariate BMI: 
 

( ) { } { }( )0 1 2 0 1 21 2
0 , , , .

i i
i i y y

P R y I Iφ φ φ φ φ φ
= =

= = Φ + +             (5) 

 

As 20% of respondents had no sign of Steatosis ( )1
i

y = and 30% showed 

signs of mild Steatosis ( )2
i

y = , thus a selection of 
0 1

0.9, 0.2φ φ= − = −  and 

2 0.2φ −= , would result in an approximate missing rate of 15% 

( ) ( )( ) ( )[ ]0.9 0.2 0.2 0.2 0.3 1 0.1587Φ − − − = Φ − =  which is convenient for our 

purpose. 
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The BMI values for all the respondents and also for male and female re-
spondents separately, were checked by using the Kolmogorov-Smirnov 

(KS) test and a Normal distribution was found appropriate in all three 

cases (respective p-values were 0.9534, 0.9121 and 0.9067). Alternatively, 
the Anderson-Darling Test may be used to test for normality. This test 

gives more weight to the tails compared to the more common KS test. 

In our data, normality is accepted for three cases by this method.  
 

 
TABLE 3: Parameter estimates and standard errors for the original data and  

complete-case analysis. 
 

Effect 
Original Data Complete-Case Analysis 

Estimate SE Estimate SE 

Threshold 1 0.8468 2.7514 0.2086 2.8640 

Threshold 2 2.5353 2.7727 2.2254 2.8862 

Age -0.0472 0.0291 -0.0429 0.0298 

Duration 0.0532 0.0466 0.0203 0.0506 

Blood Preassure -0.0127 0.0117 -0.0148 0.0125 

Sex (Male) -1.2798 0.5987 -1.0989 0.6343 

BMI 0.2619 0.0835 0.2556 0.0856 

 
 

Table 3 shows parameter estimates and standard errors for the original 

data (with no missing data) and for the complete-case analysis (were all 
cases with missing values were omitted from the study). The original-

data results show that blood pressure, duration and age are not significant 

(p-values = 0.1389, 0.1268 and 0.0524 respectively), whilst BMI and Sex 

have some significant effects (p-values = 0.0009 and 0.0163, respectively). 
The odds of lower levels of Steatosis in men are less than that of in 

women and increase in the BMI index increases the odds of higher levels 

of Steatosis. 

 
Four approaches to MI 

In this subsection four approaches (methods A, B, C and D) to Multiple 

Imputation will be discussed and applied to the introduced dataset. 

The first three of these approaches (methods A, B and C) use proper 

imputation method and the last one (method D) uses the improper 

approach. These approaches differ in the amount of information they 

use for imputation 
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•  Method A: In the first method the missing variable (x) is 

modeled strictly on the other covariates ( )1 4,...,z z , 

 

( ) ( )2

1 2 3 4, , , , ;i i i i i ix z z z z N µ σ∼                            (6) 

 

 in which  
4

0
,i j jij

zµ α
=

=∑  and it is defined that: 0 1
i

z = for all i . Now 

the joint distribution of ( ),y x given z  can be expressed as: 

 

( ) ( ) ( ), , .P y x z P y x z P x z=  

 
TABLE 4: Parameter estimates and standard errors for four methods of MI. 

 

Effect 
Method A Method B Method C Method D 

Estimate SE Estimate SE Estimate SE Estimate SE 

Threshold 1 0.2007 2.9456 1.3062 2.8611 1.2513 2.7703 0.4867 2.7969 

Threshold 2 1.8413 1.2243 3.0780 0.9784 3.0404 0.6725 2.1875 0.9086 

Age 0.0459 0.0289 -0.0477 0.0293 -0.0484 0.0294 -0.0464 0.0293 

Duration 0.0508 0.0489 0.0496 0.0474 0.0485 0.0470 0.0513 0.0471 

Blood 

Pressure 
-0.0101 0.0119 -0.0123 0.0122 -0.0127 0.0122 -0.0125 0.0118 

Sex (Male) -1.2087 0.6246 -1.3180 0.6134 -1.2843 0.6038 -1.2563 0.6072 

BMI 0.2208 0.0954 0.2808 0.0872 0.2823 0.0886 0.2473 0.0833 

 

•  Method B: In the second method the response variable y  (with 

three ordinal categories) is also included in the model, using two 

dummy variables that is 

 

( ) ( )2

1 2 3 4, , , , ,i i i i i i ix y z z z z N µ σ∼                   (7) 

 

 where 
4

1 20
,i j ji ij

z yµ α φ ∗

=
= +∑  and again 0 1

i
z = . It is obvious that this 

method is using more information for imputing the missing values 

compared to the one before. 
 

•  Method C: In the third method, separate models are fitted for each 

 level of the ordinal response variable that is 

 

( ) ( )2

1 2 3 4, , , , , 1,2,3;i i i i i i yi yi ix y z z z z N for yµ σ =∼                   (8) 
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 where  
4

0
,

iyi jy jij
zµ α

=
=∑  and 0 1

i
z = . Equation (8) can also be written 

as a full model which includes the interactions between the response 

variable y  and the covariates 1 4,..., .z z This model is using all the 

available information in the data for imputation. 
 

•  Method D: In this method we use an improper imputation approach 

 where we generate missing values by 
 

( ) ( )2

1 2 3 4, , , , , ,
i ii i i i i i y yx y z z z z Nγ µ σ∼ for 1,2,3

i
y =                (9) 

 

where ( )
4

1 1 2 20
, ,i j ji i ij

z y yµ α φ φ γ α φ∗ ∗

=
= + + =∑  and 0 1

i
z = . For 

computational convenience, we will use a complete-case estimate of 

γ for generating values from the distribution in Equation (9). 

 
TABLE 5: Parameter estimates and standard errors for the original data and 

complete-case analysis with insignificant covariates removed. 

 

Effect 
Original Data Complete-Case Analysis 

Estimate SE Estimate SE 

Threshold 1 3.6013 1.9029 3.7141 1.9759 

Threshold 2 5.1767 1.9665 5.6069 2.0705 

Sex (Male) -1.1983 0.5828 -1.1126 0.6200 

BMI 0.2096 0.0741 0.2187 0.0768 

 

 
TABLE 6: Parameter estimates and standard errors for four methods of MI with 

insignificant covariates removed. 

 

Effect 
Method A Method B Method C Method D 

Estimate SE Estimate SE Estimate SE Estimate SE 

Threshold 1 2.7200 1.9629 4.5235 1.9610 3.9097 1.8700 4.1505 1.8811 

Threshold 2 4.2529 0.8261 6.2006 0.6413 5.5315 0.4422 5.7840 0.3330 

Sex (Male) -1.0659 0.5795 -1.3159 0.5923 -1.243 0.5873 -1.2507 0.5927 

BMI 0.1736 0.0760 0.2484 0.0770 0.2213 0.0728 0.2315 0.0737 

 
 

The "mi" package (Yu-Sung et al. (2009)) in the statistical software R, was 

used to create M = 5 draws from each distribution. A cumulative logit 

model was also implemented in R for the analysis model using the 

function "polr (MASS)". Table 4 shows parameter estimates and 
respective standard errors obtained using each method. 
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Due to the rather small sample size of 60 individuals, and in order to 

further see the performance of the four MI methods, insignificant 
covariates in the model for the original data were omitted from the 

analysis and all six models were fitted again using only the covariates 

"Sex" and "BMI". The results can be seen in Tables 5 and 6. 
 

For the covariate effects, the Complete-Case results show some bias and 

inefficiency regarding coefficient estimates. The bias is more or less 
corrected in all imputation methods, although for this dataset, method 

B shows a slightly better performance for the effects of age, duration and 

BMI compared to that of the method C on the other hand is less biased 

for the effects of blood pressure and sex. The gain of efficiency is again 
addressed in all four methods, compared to Complete-Case (CC) 

analysis, although again methods B and C perform better than 

methods A and D. 
 

The superiority of the methods B and C can be better seen when in-

significant covariates are removed from the model. Here, CC analysis and 

imputation method A fail to show the significance of the covariate sex. 
This is corrected in both imputation methods B and C. The method C, 

compared to the method B, shows less bias and more efficiency for all 

model parameters. Method D, due to the use of an improper approach, 
gives biased estimates of cut points parameters, comparing with the 

results of the original data. 
 

 

DISCUSSION 

It can be concluded that use of proper methods of imputation 

gives better results. It can also be concluded that as more information is 
used in the imputation procedure, estimates of model parameters tend to 

be less biased and more efficient. 
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